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Campus de la Plaine CP229, Boulevard du Triomphe, B-1050 Brussels, Belgium
2 Ivan Franko Lviv National University, Chair of Theoretical Physics, 12, Drahomanov Street,
Lviv UA-79005, Ukraine

E-mail: cquesne@ulb.ac.be and tkachuk@ktf.franko.lviv.ua

Received 10 December 2003, in final form 11 June 2004
Published 14 October 2004
Online at stacks.iop.org/JPhysA/37/10095
doi:10.1088/0305-4470/37/43/006

Abstract
We continue our previous application of supersymmetric quantum mechanical
methods to eigenvalue problems in the context of some deformed canonical
commutation relations leading to nonzero minimal uncertainties in position
and/or momentum. Here we determine for the first time the spectrum and
the eigenvectors of a one-dimensional harmonic oscillator in the presence of a
uniform electric field in terms of the deforming parameters α, β. We establish
that whenever there is a nonzero minimal uncertainty in momentum, i.e., for
α �= 0, the correction to the harmonic oscillator eigenvalues due to the electric
field is level dependent. In the opposite case, i.e., for α = 0, we recover the
conventional quantum mechanical picture of an overall energy-spectrum shift
even when there is a nonzero minimal uncertainty in position, i.e., for β �= 0.
Then we consider the problem of a D-dimensional harmonic oscillator in the
case of isotropic nonzero minimal uncertainties in the position coordinates,
depending on two parameters β, β ′. We extend our methods to deal with the
corresponding radial equation in the momentum representation and rederive
in a simple way both the spectrum and the momentum radial wavefunctions
previously found by solving the differential equation. This opens the way to
solving new D-dimensional problems.
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1. Introduction

During recent years, there has been much interest in studying quantum mechanical problems
under the assumption of a modified Heisenberg uncertainty relation leading to nonzero minimal
uncertainties in position and/or momentum. Such works are motivated by several independent
lines of investigations in string theory and quantum gravity, which suggest the existence of a
finite lower bound to the possible resolution of length �x0 (see, e.g., [1–3]). Furthermore, the
absence of plane waves or momentum eigenvectors on generic curved spaces also hints at a
finite lower bound to the possible resolution of momentum �p0 (see, e.g., [4]).

Such nonzero minimal uncertainties in position and momentum can be described in
the framework of small quadratic corrections to the canonical commutation relations [5–7].
These corrections can also provide an effective description of non-pointlike particles, such
as quasiparticles and various collective excitations in solids, or composite particles, such as
nucleons and nuclei [6].

The resolution of quantum mechanical problems with such deformed canonical
commutation relations has been mostly restricted to the case where there is only a nonzero
minimal uncertainty in position. Then one may indeed consider a deformed Schrödinger
equation in momentum representation and solve it using the technique of differential equations.
An exact solution to the one-dimensional harmonic oscillator problem has been obtained in
this way [8]. This approach has been extended to D dimensions [9] and some ladder operators
have been constructed [10]. Some perturbative or partial results have also been obtained for
the hydrogen atom [11, 12].

The case where there are nonzero minimal uncertainties in both position and momentum
is much more involved because there is neither position nor momentum representation, so
that one has to resort to a generalized Fock space representation or, equivalently, to the
corresponding Bargmann representation [5, 13]. In this context, we have recently solved [14]
the eigenvalue problem for the one-dimensional harmonic oscillator in a purely algebraic way
by availing ourselves of an extension of supersymmetric quantum mechanical (SUSYQM)
and shape-invariance techniques. The SUSYQM formalism [15, 16] supplemented with
shape invariance under parameter translation [17, 18] is known to be a reformulation of
the factorization method developed by Schrödinger [19] and by Infeld and Hull [20] (for a
comparison between these two methods and corresponding references, see [16, 21]). The
procedure that we have used relies on a generalized type of shape invariance, namely that
connected with parameter scaling [22–25].

The purpose of the present paper is to further illustrate the power of SUSYQM techniques
in solving eigenvalue problems corresponding to deformed canonical commutation relations.

First, we will consider the case of a one-dimensional harmonic oscillator with nonzero
minimal uncertainties in position and momentum in the presence of a uniform electric
field. Contrary to the solution of the corresponding problem in conventional quantum
mechanics, which can be obtained from the solution without electric field by a simple
coordinate shift, that of the present problem is more involved and will reveal some new
features.

Next, we will show how to extend our method to higher dimensional problems by providing
an alternative and simple solution to the eigenvalue problem for the D-dimensional harmonic
oscillator with isotropic nonzero minimal uncertainties in the position coordinates, which was
previously dealt with by the differential equation technique [9].

Our paper is organized as follows. The one-dimensional harmonic oscillator in a uniform
electric field is considered in section 2. Section 3 deals with the D-dimensional harmonic
oscillator. Finally, section 4 contains the conclusion.
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2. One-dimensional harmonic oscillator in a uniform electric field

Let us consider the case of a particle of mass m and charge q in a harmonic potential 1
2mω2x2

and a uniform electric field E parallel to the x-axis. It is described by the Hamiltonian

H = p2

2m
+

1

2
mω2x2 − qEx (2.1)

and the corresponding eigenvalue problem reads

H |ψn〉 = En|ψn〉 n = 0, 1, 2, . . . . (2.2)

Here x and p are assumed to satisfy the deformed canonical commutation relation

[x, p] = ih̄(1 + αx2 + βp2) (2.3)

where α � 0, β � 0, and αβ < h̄−2, so that the minimal uncertainties in position and
momentum are given by �x0 = h̄

√
β/(1 − h̄2αβ) and �p0 = h̄

√
α/(1 − h̄2αβ), respectively

[5].
In terms of dimensionless operators, X = x/a, P = pa/h̄, h = H/(h̄ω) and

dimensionless parameters α = αa2 and β = βh̄2/a2, E = qEa/(h̄ω), where a = √
h̄/(mω),

equations (2.1)–(2.3) can be rewritten as

h = 1
2 (P 2 + X2) − EX (2.4)

h|ψn〉 = en|ψn〉 en ≡ En/(h̄ω) n = 0, 1, 2, . . . (2.5)

[X,P ] = i(1 + αX2 + βP 2) (2.6)

with α � 0, β � 0, and αβ < 1.

2.1. Energy spectrum

At this stage, it is worth noting that going to transformed operators X′ = X − E and P ′ = P ,
as in conventional quantum mechanics, would convert h into a shifted harmonic oscillator
Hamiltonian

h = 1
2 (P ′2 + X′2) − 1

2E
2 (2.7)

but, at the same time, change the commutation relation (2.6) into

[X′, P ′] = i(1 + αX′2 + βP ′2 + 2αEX′ + αE2). (2.8)

Hence, except for α = 0, the energy spectrum of h cannot be deduced from that for E = 0
obtained in our previous paper [14] (henceforth referred to as I and whose equations will be
subsequently quoted by their number preceded by I).

Let us instead try to factorize h as

h = B+(g, s, r)B−(g, s, r) + ε0 (2.9)

where

B±(g, s, r) = 1√
2
(sX ∓ igP + r) (2.10)

and ε0 is the factorization energy. In (2.10), g, s and r are assumed to be three constants
depending on the parameters α, β, E of the problem. The first two, g and s, are chosen positive
and going to 1 in the limit α, β → 0, while r is taken as going to −E in the same limit. With
this choice, the operators B+(g, s, r) and B−(g, s, r) will be counterparts of the creation and
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annihilation operators for the shifted harmonic oscillator occurring in conventional quantum
mechanics.

On inserting (2.10) in (2.9) and comparing the resulting expression with (2.4), we get four
conditions, of which the first two are independent of E and coincide with equations (I2.7) and
(I2.8). They fix the values of g and s,

g = sk s = 1√
1 − αk

k ≡ 1

2
(β − α) +

√
1 +

1

4
(β − α)2 (2.11)

in terms of α and β. The remaining two conditions read

rs = −E (2.12)

ε0 = 1
2 (gs − r2). (2.13)

Equation (2.12) provides the value of r,

r = −E
√

1 − αk (2.14)

while equation (2.13) leads to the value of the factorization energy in terms of the three
parameters α, β, E .

Having proved that the Hamiltonian h is factorizable, let us now consider a hierarchy of
Hamiltonians

hi = B+(gi, si, ri)B
−(gi, si, ri) +

i∑
j=0

εj i = 0, 1, 2, . . . (2.15)

whose first member h0 coincides with h. Here gi, si, εi, ri are some parameters, the first three
being assumed positive, and g0 = g, s0 = s, r0 = r .

Proceeding as in I, let us impose the shape invariance condition

B−(gi, si, ri)B
+(gi, si, ri) = B+(gi+1, si+1, ri+1)B

−(gi+1, si+1, ri+1) + εi+1 (2.16)

where i = 0, 1, 2, . . . . It is equivalent to a set of four relations, of which the first two are again
independent of E and coincide with equations (I2.15) and (I2.16), respectively. In I, the latter
have been solved by introducing some new combinations of parameters

ui = gi + γ si vi = gi − γ si γ ≡
√

β

α
(2.17)

di = uivi ti = vi

ui

(2.18)

thereby leading to

di = d ti = q−i t or ui = qi/2u vi = q−i/2v (2.19)

where

d ≡ uv t ≡ v

u
q ≡ 1 +

√
αβ

1 − √
αβ

. (2.20)

The remaining two relations read

ri+1si+1 = risi (2.21)

εi+1 = 1
2

(
gisi + gi+1si+1 + r2

i − r2
i+1

)
. (2.22)
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On taking equations (2.12), (2.17), (2.19) and (2.20) into account, we obtain from (2.21) the
solution for ri ,

ri = −2γ E
u

q−i/2

(
1 − t

qi

)−1

. (2.23)

Furthermore, equation (2.22) leads to the eigenvalues en of h,

en(q, t, E) =
n∑

i=0

εi =
n−1∑
i=0

gisi +
1

2
gnsn − 1

2
r2
n = en(q, t, 0) + �en(q, t, E) (2.24)

where

en(q, t, 0) = K2

q + 1

{(
1 − t2

qn−1

)
[n]q +

1

2

(
qn − t2

qn

)}
(2.25)

K ≡ u

√
q + 1

4γ
[n]q ≡ qn − 1

q − 1

are the eigenvalues in the absence of electric field, given in (I2.30), and

�en(q, t, E) = −2γ 2E2

u2
q−n

(
1 − t

qn

)−2

(2.26)

are the corrections due to the electric field. The latter can be rewritten as

�en(q, t, z) = −1

2
K2z2(1 − t)2q−n

(
1 − t

qn

)−2

(2.27)

in terms of a new parameter proportional to E ,

z ≡ 4γ

√
γ

q + 1

E
u2(1 − t)

(2.28)

which will subsequently prove convenient (see equations (2.47) and (2.57)).
In contrast with conventional quantum mechanics, the additional negative contributions

�en(q, t, z) are n dependent for generic α and β values. Since q > 1, their absolute value
decreases from 1

2K2z2 to 0 when n goes from 0 to ∞. As it can be inferred from the
definition (2.4) of h, where the electric field breaks the symmetry under exchange of X and
P,�en(q, t, z) is not invariant under exchange of α and β as it is the case for en(q, t, 0). This
will lead to different limiting cases in the next subsection.

The corrections to the excitation energies in the absence of electric field

en(q, t, 0) − e0(q, t, 0) = 1

2
K2

(
1 − t2

qn

)
[n]q (2.29)

are given by

�en(q, t, z) − �e0(q, t, z) = 1

2
(q − 1)K2z2q−n

(
1 − t2

qn

) (
1 − t

qn

)−2

[n]q . (2.30)

On taking the results for gi, si, ri and εi into account, the Hamiltonians (2.15) of the
SUSYQM hierarchy can be written as

hi = 1
2 (aiP

2 + biX
2) − EX + ci i = 0, 1, 2, . . . (2.31)

where ai, bi, ci are constants independent of E and given by equation (I2.36). Going back to
variables with dimensions, we get

Hi ≡ h̄ωhi = p2

2mi

+
1

2
miω

2
i x

2 − qEx + cih̄ω mi = m

ai

ωi =
√

aibiω. (2.32)

Note that contrary to the mass and the frequency, the electric field is the same for all the
partners.
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2.2. Some special cases

2.2.1. Limit α → 0. For small α values, we obtain

q−n 	 1 − 2n
√

αβ + O(α)
u

γ

(
1 − t

qn

)
	 2s(1 − n

√
αβ) + O(α). (2.33)

Inserting such results in (2.26) transforms the latter into

�en 	 − E2

2s2
+ O(α) where s 	 1 + O(α). (2.34)

In the limit α → 0, we therefore get

�en(E) = − 1
2E

2 (2.35)

which is independent of n and of β and is actually the same as in conventional quantum
mechanics. We conclude that the n-dependent corrections to an exponential spectrum obtained
in the general case reduce to n-independent corrections to a quadratic spectrum in the special
case α = 0. Such a result would also follow from considering equations (2.7) and (2.8) for
α = 0.

2.2.2. Limit β → 0. For small β values, we obtain

q−n 	 1 + 2n
√

αβ + O(β)
u

γ

(
1 − t

qn

)
	 2(s + ngα) + O(

√
β) (2.36)

so that equation (2.26) now becomes

�en 	 − E2

2(s + ngα)2
+ O(

√
β) (2.37)

where

g 	 1 + O(β) s 	 1
2α +

√
1 + 1

4α2 + O(β). (2.38)

In the limit β → 0, we therefore get corrections

�en(α, E) = − 1
2E

2

[(
n + 1

2

)
α +

√
1 + 1

4α2

]−2

(2.39)

to a quadratic spectrum en(α). The latter can be obtained from equation (I3.6) by substituting
α for β. We conclude that the essential feature of the general case, namely the n dependence
of the correction terms, is already present when there is only a nonzero minimal uncertainty
in momentum.

The result (2.39) may also be derived directly from SUSYQM and shape invariance
without resorting to a limiting procedure. Going back to the factorization and shape invariance
conditions given in section 2.1 and setting β = 0 therein, we are only left with two parameters
si and ri , satisfying the conditions si+1(si+1−α) = si(si +α), ri+1 = risi/si+1, since gi = g = 1.
This leads to si = s + iα and ri = −E/si , from which equation (2.39) can be easily obtained.
The fact that ri is not independent of i, contrary to what happens for α = 0, is clearly
responsible for the n dependence of �en(α, E) shown in (2.39).
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2.2.3. Case α = β �= 0. In I, we showed that whenever the two dimensionless deforming
parameters α and β are equal (which means that there is a specific relation α = m2ω2β

between the original parameters α, β of equation (2.3)), the harmonic oscillator Hamiltonian
1
2 (P 2 + X2) reduces to a q-deformed harmonic oscillator one

hosc = 1
4 (q + 1){b, b+} (2.40)

where

b+ = 1√
q + 1

(X − iP) b = 1√
q + 1

(X + iP) (2.41)

satisfy the relation

bb+ − qb+b = I (2.42)

with q = (1 + α)/(1 − α).
In terms of the operators (2.40) and (2.41), the Hamiltonian (2.4) can be rewritten as

h = hosc − 1
2

√
q + 1E(b+ + b). (2.43)

Since for α = β, we get γ = 1, t = 0 and u = 2/
√

1 − α = √
2(q + 1), it follows from

equation (2.26) or (2.27) that the correction term to the eigenvalues (I3.11) of hosc reads

�en(q, E) = − E2

q + 1
q−n (2.44)

or

�en(q, z) = − 1
2K2z2q−n K = 1√

2
(q + 1) z = 2E(q + 1)−3/2 (2.45)

which is again n dependent.

2.3. Hamiltonian eigenvectors

Before going to the general case 0 �= α �= β �= 0, it is worth considering the special case
α = β �= 0, for which the Hamiltonian eigenvalues and eigenvectors depend only on two
parameters instead of three.

2.3.1. Case α = β �= 0. In terms of the q-deformed boson creation and annihilation
operators b+, b, defined in equation (2.41), the operators B±(gi, si, ri) corresponding to the
Hamiltonian (2.15) of the SUSYQM hierarchy, assume the simple form

B+(q, zi) = 1√
2
Kqi/2(b+ − zi) B−(q, zi) = 1√

2
Kqi/2(b − zi) (2.46)

with

zi ≡ zq−i . (2.47)

In the (q-deformed) Bargmann representation of the operators b+, b, associated with the
corresponding q-deformed coherent states [26, 27], they are represented by

B+(q, zi) = 1√
2
Kqi/2(ξ − zi) B−(q, zi) = 1√

2
Kqi/2(Dq − zi) (2.48)

where ξ is a complex variable and Dq is the q-differential operator defined by Dqψ(ξ) =
[ψ(qξ) − ψ(ξ)]/[(q − 1)ξ ].

Here it should be stressed that although the electric field remains constant in the
Hamiltonians hi of the SUSYQM hierarchy, the corresponding parameter zi in the first-
order operators B±(q, zi), involved in the factorization of hi , is i dependent, as shown
in (2.47).



10102 C Quesne and V M Tkachuk

The ground state of h is represented by a function ψ0(q, z; ξ), which is a normalized
solution of the equation

B−(q, z)ψ0(q, z; ξ) = 0 or Dqψ0(q, z; ξ) = zψ0(q, z; ξ). (2.49)

It is therefore the Bargmann representation of a q-deformed CS |z〉q with real z and it is given
by [27]

ψ0(q, z; ξ) = N0(q, z)Eq(zξ) N0(q, z) = [Eq(|z|2)]−1/2 (2.50)

where Eq(ξ) = ∑∞
n=0 ξn

/
[n]q! is a q-exponential.

The normalized excited state Bargmann wavefunctions can be determined recursively
through the equations

ψn+1(q, z; ξ) = [en+1(q, z) − e0(q, z)]−1/2B+(q, z)ψn(q, z1; ξ)

=
{

[n + 1]q

(
1 +

(q − 1)z2

qn+1

)}−1/2

(ξ − z)ψn

(
q,

z

q
; ξ

)
(2.51)

where n = 0, 1, 2, . . . . It is straightforward to show that they are given by

ψn(q, z; ξ) = Nn(q, z)

n−1∏
k=0

(
ξ − z

qk

)
Eq

(
z

qn
ξ

)
(2.52)

where

Nn(q, z) = {[n]q!(q−2n+1(1 − q)z2; q)n}−1/2N0

(
q,

z

qn

)
(2.53)

and n = 1, 2, . . . . In (2.53), the symbol (a; q)n is defined as in equation (IA.5).
For z → 0, the wavefunctions ψn(q, z; ξ) reduce to the Bargmann representation

ϕn(q; ξ) = ξn/
√

[n]q! of the n–q-boson states |n〉q = (b+)n/
√

[n]q!|0〉q , which are the
eigenvectors of hosc.

2.3.2. General case 0 �= α �= β �= 0. In the general case of unequal parameters α and β,
q-boson creation and annihilation operators satisfying equation (2.42) are defined by

b+ = 1√
q + 1

(
1√
γ

X − i
√

γP

)
b = 1√

q + 1

(
1√
γ

X + i
√

γP

)
. (2.54)

The operators B±(gi, si, ri), corresponding to hi , can be written in terms of them as

B+(q, ti , zi) = 1√
2
Kqi/2(b+ − tib − zi) B−(q, ti , zi) = 1√

2
Kqi/2(b − tib

+ − zi)

(2.55)

and are represented by

B+(q, ti , zi) = 1√
2
Kqi/2(ξ − tiDq − zi) B−(q, ti , zi) = 1√

2
Kqi/2(Dq − tiξ − zi)

(2.56)

in Bargmann representation. In equations (2.55) and (2.56), zi is given by

zi = − ri

Kqi/2
= zq−i (1 − t)

(
1 − t

qi

)−1

(2.57)

and reduces to the value given in (2.47) for α = β or t = 0.
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The ground-state Bargmann wavefunction now satisfies the first-order difference equation

Dqψ0(q, t, z; ξ) = (tξ + z)ψ0(q, t, z; ξ). (2.58)

From the latter, it is clear that for large values of |ξ |, the behaviour of ψ0(q, t, z; ξ) is
the same as that of ψ0(q, t; ξ), corresponding to E = 0. It therefore follows from I that
equation (2.58) has a normalizable solution on the whole complex plane. By using properties
(IA.2) and (IA.8) of the q-exponential and the q-differential operator, respectively, the latter
can be written as

ψ0(q, t, z; ξ) = N0(q, t, z)Eq(λξ)Eq(µξ) (2.59)

where

λ = 1

2
z + � µ = 1

2
z − � � =

√
1

4
z2 − t

q − 1
(2.60)

and N0(q, t, z) is some normalization coefficient.
On expanding the two q-exponentials in (2.59), ψ0(q, t, z; ξ) becomes

ψ0(q, t, z; ξ) = N0(q, t, z)

∞∑
n=0

cn(q, t, z)ϕn(q; ξ) (2.61)

where

cn(q, t, z) = 1√
[n]q!

n∑
m=0

[
n

m

]
q

λmµn−m = 1√
[n]q!

[n/2]∑
p=0

an,p(q)zn−2ptp (2.62)

an,0(q) = 1 (2.63)

an,p(q) =
n−1∑

r1=2p−1

[r1]q

r1−2∑
r2=2p−3

[r2]q · · ·
ri−1−2∑

ri=2p−2i+1

[ri]q · · ·
rp−1−2∑
rp=1

[rp]q p = 1, 2, . . . , [n/2]

(2.64)

N0(q, t, z) =
( ∞∑

n=0

c2
n(q, t, z)

)−1/2

. (2.65)

Here [n/2] denotes the largest integer contained in n/2 and
[

n
m

]
q

= [n]q!/([m]q![n − m]q!) is

a q-binomial coefficient. The proof of equation (2.64) is by induction over p.
Note that �, defined in (2.60), may be real or imaginary according to the relative values of

the parameters. For instance, for α = β, we get t = 0 and � = z/2 so that λ = z and µ = 0
are real. In such a case, equation (2.59) reduces to equation (2.50). In contrast, for E = 0,
we get z = 0 and � = i

√
t/(q − 1) so that λ = i

√
t/(q − 1) and µ = λ∗ are imaginary.

Equation (2.59) then becomes

ψ0(q, t; ξ) = N0(q, t)Eq

(
i

√
t

q − 1
ξ

)
Eq

(
−i

√
t

q − 1
ξ

)
= N0(q, t)Eq2

(
t

q + 1
ξ 2

)
(2.66)

where in the last step we used a well-known property of the q-exponential [28, 29].
Equation (2.66) coincides with equation (I4.12).
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The normalized excited state Bargmann wavefunctions satisfy the recursion relation

ψn+1(q, t, z; ξ) =
{

[n + 1]q

(
1 − t2

qn+1

) [
1 + (q − 1)z2q−n−1

(
1 − t

qn+1

)−2
]}−1/2

× (ξ − tDq − z)ψn(q, t1, z1; ξ) n = 0, 1, 2, . . . (2.67)

where t1 = t/q and z1 = (z/q)(1 − t)(1 − t/q)−1.
The solution of equation (2.67) can be written as

ψn(q, t, z; ξ) = Nn(q, t, z)Pn(q, t, z; ξ)Eq(λnξ)Eq(µnξ) (2.68)

where λn and µn are given by equation (2.60) with t and z replaced by tn and zn, respectively,
Pn(q, t, z; ξ) is an nth-degree polynomial in ξ , satisfying the relation

Pn+1(q, t, z; ξ) = (ξ − z)Pn(q, t1, z1; ξ) − t (tn+1ξ + zn+1)Pn(q, t1, z1; qξ)

− tDqPn(q, t1, z1; ξ) (2.69)

with P0(q, t, z; ξ) ≡ 1, and Nn(q, t, z) is a normalization coefficient fulfilling the recursion
relation

Nn+1(q, t, z) =
{

[n + 1]q

(
1 − t2

qn+1

)[
1 + (q − 1)z2q−n−1

(
1 − t

qn+1

)−2
]}−1/2

×Nn(q, t1, z1). (2.70)

It can be shown that for the first few n values, the polynomials Pn(q, t, z; ξ) are given by

P1(q, t, z; ξ) =
(

1 − t2

q

) [
ξ − z

(
1 − t

q

)−1
]

(2.71)

P2(q, t, z; ξ) =
(

1 − t2

q3

) [(
1 − t2

q

)
ξ 2 − [2]q

z

q

(
1 − t2

q

) (
1 − t

q2

)−1

ξ − t

+
z2

q
(1 − t)

(
1 +

t

q

) (
1 − t

q2

)−2
]

(2.72)

P3(q, t, z; ξ) =
(

1 − t2

q5

) (
1 − t2

q3

) {(
1 − t2

q

)
ξ 3 − [3]q

z

q2

(
1 − t2

q

) (
1 − t

q3

)−1

ξ 2

+ [3]q

[
− t

q
+

z2

q3
(1 − t)

(
1 +

t

q

)(
1 − t

q3

)−2
]

ξ

+ z
t

q2

[
([2]q + q) − ([2]q + 1)t

] [(
1 − t

q

) (
1 − t

q3

)]−1

− z3

q3
(1 − t)2

(
1 +

t

q2

) [(
1 − t

q

) (
1 − t

q3

)3
]−1 }

. (2.73)

For z = 0, they reduce to the corresponding polynomials obtained in (I4.26)–(I4.28), while
for t = 0, they give back the polynomials multiplying the q-exponential in equation (2.52), as
it should be.
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2.4. Comparison with a previous work

From equations (2.9) and (2.55), where in the latter i = 0, it follows that the Hamiltonian
h, defined in (2.4), is a Hermitian form bilinear in the q-boson creation and annihilation
operators b+, b, satisfying equation (2.42) with q > 1. The spectrum of the most general
abstract Hamiltonian of such a type was investigated some years ago [25]. It is therefore
interesting to see how our results compare with those previously obtained.

In [25], it has been shown that there exist two factorization schemes leading to two
possible branches of the discrete spectrum for the considered Hamiltonian. In our case too,
the existence of such schemes has been noticed: the parameter k ≡ g/s indeed satisfies some
quadratic equation, of which we have only kept the root with a plus sign in front of the radical,
as shown in (2.11) (see also [14]). Our motivation for eliminating the other root with a minus
sign in front of the radical has been purely physical. We indeed consider, as previous authors
working in the field of very small quadratic corrections to the canonical commutation relations
leading to nonzero minimal uncertainties in position and momentum [4–13], that our theory
should give back the standard results when the deforming parameters α, β go to zero. The
other solution for k appears to be connected with a so-called classically singular representation
(see, e.g., [30]), which is regarded in such a theory as unphysical.

Focusing our attention now on the first factorization scheme of [25], we note that our result
for the energy spectrum, given in (2.24), (2.25) and (2.27), can be retrieved from equation (20)
of [25] after identifying the parameters α0, β0 and γ0 of equation (23) in the same reference
with K/

√
2,−Kt/

√
2 and −Kz/

√
2, respectively.

In section 2.3, we have provided a thorough study of the corresponding Bargmann
wavefunctions, which in contrast with what is claimed in [25] does not happen to be very
simple. It indeed turns out that whilst the ground and first-excited states (see (2.59), (2.68)
and (2.71)) are correctly given by equations (38) and (39) of that paper after identifying the
parameters as mentioned above and z with ξ , such is not the case for the higher-excited
states, which as immediately seen from (2.72) and (2.73), do not factorize as stated in [25].
Furthermore, our approach has directly led us to a compact expression for the ground-state
wavefunction (2.59) as a product of two q-exponentials instead of the infinite product of
quadratic factors displayed in [25]. The former can be easily expanded into the latter by
employing well-known properties of q-exponentials [28, 29].

3. D-dimensional harmonic oscillator

Let us now consider the D-dimensional harmonic oscillator problem described by the
Hamiltonian

H = p2

2m
+

1

2
mω2x2 (3.1)

where the position and momentum components xi, pi, i = 1, 2, . . . , D, satisfy modified
commutation relations of the type [6, 8, 9]

[xi, pj ] = ih̄(δi,j + βp2δi,j + β
′
pipj )

[pi, pj ] = 0 (3.2)

[xi, xj ] = ih̄
(2β − β

′
) + (2β + β

′
)βp2

1 + βp2
(pixj − pjxi)
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where β, β
′ � 0. Such commutation relations imply isotropic nonzero minimal uncertainties

in the position coordinates �x0i = �x0 = h̄
√

Dβ + β
′
, but none in the momentum

coordinates, which are simultaneously diagonalizable.
In the momentum representation, the operators pi become multiplicative operators, while

the operators xi are realized as differential operators ih̄[(1 + βp2)∂/∂pi + β
′
pipj∂/∂pj + γpi].

Here γ is an arbitrary constant, which does not appear in the commutation relations (3.2) and
only affects the weight function in the scalar product in momentum space

〈f |g〉 =
∫

dDp

[1 + (β + β
′
)p2]1−α

f ∗(p)g(p) (3.3)

where

α = γ − 1
2 (D − 1)β

′

β + β
′ . (3.4)

Since the Hamiltonian (3.1) is rotationally invariant, its momentum space eigenfunctions
can be expressed as a product of a D-dimensional spherical harmonic YlD−1···l2l1() and a radial
wavefunction Rnl(p) (where l = lD−1). In terms of a dimensionless variable P = pa/h̄ and
dimensionless parameters β = βh̄2/a2, β ′ = β

′
h̄2/a2, γ = γ h̄2/a2, where a = √

h̄/(mω),
the radial differential equation [9] can be written as

1

2

{
−

(
f (P )

d

dP

)2

−
[
D − 1

P
+ ((D − 1)β + 2γ )P

]
f (P )

d

dP
+

L2

P 2
− (Dγ − 2βL2)

+ [1 + β2L2 − γ (Dβ + β ′ + γ )]P 2

}
Rnl(P ) = enlRnl(P ) (3.5)

where L2 is the eigenvalue of the square of the D-dimensional angular momentum

L2 = l(l + D − 2) l = 0, 1, 2, . . . (3.6)

n is the radial quantum number and

f (P ) = 1 + β0P
2 β0 = β + β ′ enl = Enl

h̄ω
. (3.7)

The first-order derivative in (3.5) can be eliminated by setting

Rnl(P ) = P −(D−1)/2[f (P )]−α/2χnl(P ). (3.8)

The resulting equation reads

h(l)χnl(P ) = ẽnlχnl(P ) (3.9)

where

h(l) = 1

2

{
−

[
f (P )

d

dP

]2

+
a(l)

P 2
+ b(l)P 2

}
(3.10)

a(l) = L2 +
1

4
(D − 3)(D − 1) =

(
l +

D − 3

2

)(
l +

D − 1

2

)
(3.11)

b(l) = 1 + β2

[
L2 +

1

4
(D2 − 1)

]
+

1

2
(D − 1)ββ ′ (3.12)

ẽnl = enl − β

[
L2 +

1

4
(D − 1)2

]
+

1

4
(D − 1)β ′. (3.13)
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From (3.8), it follows that in the space spanned by functions χ(P ), the scalar product (3.3)
becomes

〈χ ′|χ〉 =
∫ ∞

0

dP

f (P )
χ ′∗(P )χ(P ). (3.14)

One should note that the arbitrary constant γ , appearing in the momentum space realization
of xi and in the scalar product (3.3), is absent from equations (3.9)–(3.14). From the very
beginning, it is therefore obvious that neither ẽnl (hence enl) nor χnl(P ) can depend on it.

3.1. Energy spectrum

Let us first prove that h(l) can be factorized as

h(l) = B+(g, s)B−(g, s) + ε̃0 (3.15)

where

B±(g, s) = 1√
2

(
∓f (P )

d

dP
+ gP − s

P

)
(3.16)

and ε̃0 is the factorization energy. Here g and s are assumed to be two positive constants that
are functions of l and of the parameters β, β ′ of the problem.

On inserting (3.16) in (3.15) and comparing the result with (3.10), we get the three
conditions

s(s − 1) = a(l) (3.17)

g(g − β0) = b(l) (3.18)

ε̃0 = gs + 1
2 (g + β0s). (3.19)

Their solution is given by

s = l +
1

2
(D − 1) (3.20)

g = 1

2
β0 + �(l) �(l) =

√
1 + β2L2 +

1

4
(Dβ + β ′)2 (3.21)

ε̃0 = 1

2
β0

(
2l + D − 1

2

)
+

(
l +

D

2

)
�(l). (3.22)

In the limit β, β ′ → 0, we get s = l + 1
2 (D − 1), g → 1, ε̃0 → l + D

2 , which correspond
to the usual factorization for the D-dimensional harmonic oscillator in conventional quantum
mechanics (see, e.g., [31] for the three-dimensional case).

The next step consists in considering a hierarchy of Hamiltonians

h
(l)
i = B+(gi, si)B

−(gi, si) +
i∑

j=0

ε̃j i = 0, 1, 2, . . . (3.23)

where h
(l)
0 = h(l), g0 = g, s0 = s and gi, si, i = 1, 2, . . . , are some positive constants. On

imposing a shape-invariance condition similar to equation (2.16), we obtain the set of three
relations

si+1(si+1 − 1) = si(si + 1) (3.24)
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gi+1(gi+1 − β0) = gi(gi + β0) (3.25)

ε̃i+1 = gi+1
(
si+1 + 1

2

) − gi

(
si − 1

2

)
+ 1

2β0(si+1 + si). (3.26)

The solution of the first two is given by

si = s + i gi = g + β0i. (3.27)

The third one, together with equation (3.19), leads to the eigenvalues

ẽn(g, s) =
n∑

i=0

ε̃i = g

(
2n + s +

1

2

)
+ β0s

(
2n +

1

2

)
+ 2β0n

2. (3.28)

Taking equations (3.20) and (3.21) into account, we can rewrite them as

ẽnl =
(

2n + l +
D

2

)
�(l) +

1

2
β0

(
2n + l +

D

2

)
+ β0

(
l +

D − 1

2

) (
2n +

1

2

)
+ 2β0n

2 (3.29)

or

ẽNl =
(

N +
D

2

)
�(l) +

1

2
β0

(
N2 + DN − L2 + D − 1

2

)
(3.30)

in terms of l and of either the radial quantum number n or the principal quantum number
N = 2n + l. Finally, from equation (3.13), it follows that the eigenvalues in the radial
differential equation (3.5) can be expressed as

eNl =
(

N +
D

2

)
�(l) +

1

2

[
(β + β ′)

(
N +

D

2

)2

+ (β − β ′)
(

L2 +
D2

4

)
+ β ′ D

2

]
. (3.31)

In the limit β, β ′ → 0, we obtain that ẽNl and eNl go to eN = N + D
2 , which is the

conventional result. Equation (3.31) shows that for nonvanishing β, β ′, the spectrum of
H, given by ENl = h̄ωeNl , is quadratic in N with an additional l dependence absent in the
conventional case. The values obtained for ENl coincide with those given in equation (57)
of [9].

The results obtained for gi, si and ε̃i allow us to write the Hamiltonians (3.23) of the
SUSYQM hierarchy as

h
(l)
i = 1

2

{
−

[
f (P )

d

dP

]2

+
a

(l)
i

P 2
+ b

(l)
i P 2

}
+ c

(l)
i (3.32)

where

a
(l)
i =

(
l + i +

D − 3

2

) (
l + i +

D − 1

2

)
(3.33)

b
(l)
i = b(l) + 2β0i�

(l) + β2
0 i2 (3.34)

c
(l)
i = i

[
β0

(
l + i − 1 +

D

2

)
+ �(l)

]
. (3.35)

In the limit β, β ′ → 0, a
(l)
i remains unchanged while b

(l)
i → 1 and c

(l)
i → i.

As in conventional quantum mechanics, the supersymmetric partners coincide formally
with some radial Hamiltonians corresponding to shifted l values, l + i, where i = 1, 2, . . . . It
should be stressed that the angular part YlD−1···l2l1() of the wavefunctions being left unchanged,
supersymmetry only concerns here the radial equation.
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3.2. Radial wavefunctions

In this subsection, we plan to determine the explicit form of the eigenfunctions χnl(P ) of
h(l). Since (h(l))† = h(l) with respect to scalar product (3.14), such eigenfunctions satisfy the
orthonormality relation∫ ∞

0

dP

f (P )
χ∗

n′l(P )χnl(P ) = δn′,n. (3.36)

Note that with respect to (3.14), we also have (B+(g, s))† = B−(g, s).
The ground-state wavefunction χ0l (P ) = χ0(g, s;P) of h(l) is obtained from the condition

B−(g, s)χ0(g, s;P) = 0 (3.37)

and given by

χ0(g, s;P) = N0(g, s)P s[f (P )]−(g+β0s)/(2β0) = N0(g, s)P µ+ 1
2 [f (P )]−

1
2 (λ+µ+1). (3.38)

Here s and g are given by equations (3.20) and (3.21), respectively, λ and µ are defined by

λ = 1

β0

(
g − 1

2
β0

)
µ = s − 1

2
(3.39)

and the normalization coefficient is

N0l = N0(g, s) =
(

2�(λ + µ + 2)

�(λ + 1)�(µ + 1)
β

µ+1
0

)1/2

. (3.40)

The excited state wavefunctions χn,l(P ) = χn(g, s;P), n = 1, 2, . . . , can be obtained
from the recursion relation

χn+1(g, s;P) = [β0(n + 1)(n + λ + µ + 2)]−1/2 1

2

[
−f (P )

d

dP
+ β0

(
λ +

1

2

)
P − µ + 1

2

P

]

×χn(g1, s1;P) n = 0, 1, 2, . . . (3.41)

where from (3.27) and (3.39), it follows that g1 = g + β0, s1 = s + 1 correspond to
λ1 = λ + 1, µ1 = µ + 1.

Let us set

χn(g, s;P) = Nn(g, s)P (λ,µ)
n (z)P µ+ 1

2 [f (P )]−
1
2 (λ+µ+1) (3.42)

where Nnl = Nn(g, s) is some normalization coefficient and P
(λ,µ)
n (z) is some (λ, µ)-

dependent, nth-degree polynomial in the variable

z = β0P
2 − 1

1 + β0P 2
(3.43)

varying in the range (−1, +1) (with P
(λ,µ)

0 (z) ≡ 1). Inserting (3.42) in (3.41) converts the
latter into the relation

P
(λ,µ)

n+1 (z) = [β0(n + 1)(n + λ + µ + 2)]−1/2 Nn(g1, s1)

Nn+1(g, s)

× 1

2

[
−(1 − z2)

d

dz
+ λ − µ + (λ + µ + 2)z

]
P (λ+1,µ+1)

n (z). (3.44)

The differential operator on the right-hand side of (3.44) can be recognized as the backward
shift operator for Jacobi polynomials, satisfying the property [32][

−(1 − z2)
d

dz
+ λ − µ + (λ + µ + 2)z

]
P (λ+1,µ+1)

n (z) = 2(n + 1)P
(λ,µ)

n+1 (z). (3.45)
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Hence the polynomials of equation (3.42) can be identified with Jacobi polynomials, while
Nn(g, s) satisfies the recursion relation

Nn+1(g, s) =
(

n + 1

β0(n + λ + µ + 2)

)1/2

Nn(g1, s1) (3.46)

from which we get

Nn(g, s) =
(

2(2n + λ + µ + 1)n!�(n + λ + µ + 1)

�(n + λ + 1)�(n + µ + 1)
β

µ+1
0

)1/2

. (3.47)

When combining equations (3.42) and (3.47) with (3.8), we finally obtain the same result
as in equation (58) of [9].

3.3. Alternative factorizations

As a final point, we would like to comment on the factorization of h(l) carried out in
section 3.1.

Equation (3.23) and the corresponding shape-invariance condition show that each element
of the hierarchy h

(l)
i , i = 0, 1, 2, . . . , admits two different factorizations: this is an example

of the so-called two-way factorization [33]. The first-order operators B±(gi, si) involved in
the factorization act as shift operators, connecting pairs of eigenstates with the same energy,
belonging to two consecutive Hamiltonians of the hierarchy.

The conventional harmonic oscillator radial equation is known to admit a four-way
factorization [31]: there indeed exists another pair of factorizations associated with another
hierarchy of Hamiltonians h

(l)′
i , i = 0, 1, 2, . . . . As before, the corresponding first-order

operators B±′(gi, si) connect pairs of eigenstates with the same energy, belonging to two
consecutive Hamiltonians of the second hierarchy. Since, however, the Hamiltonians of the
two extended hierarchies3 are linked through the relation h

(l)′
−i = h

(l)
i − 2i, the shift operators

of the second hierarchy also connect pairs of eigenstates with different energies, belonging to
two consecutive Hamiltonians of the first hierarchy. For such a reason, one can combine both
pairs of shift operators to construct ladder operators connecting the eigenstates of the same
Hamiltonian [31] (see also [34]).

In the case of the deformed commutation relations (3.2), the harmonic oscillator radial
equation (3.9) also admits a pair of alternative factorizations, where in the counterpart of (3.16)
we choose g > 0 and s < 0 instead of both g, s > 0. Distinguishing by primes all parameters
relative to these alternative factorizations from those of section 3.1, we obtain

s ′ = −l − 1

2
(D − 3) (3.48)

g′ = 1

2
β0 + �(l) (3.49)

ε̃′
0 = −1

2
β0

(
2l + D − 7

2

)
−

(
l +

D − 4

2

)
�(l) (3.50)

and

s ′
i = s ′ + i (3.51)

3 By extended hierarchies, we mean the sets of Hamiltonians h
(l)
i or h

(l)′
i obtained by letting i run over Z. Some of

these Hamiltonians may be unphysical. For instance, in the case of h
(l)
i given in (3.32), unphysical Hamiltonians

correspond to i < −l.
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g′
i = g′ + β0i (3.52)

ε̃′
i = g′

i

(
s ′
i + 1

2

) − g′
i−1

(
s ′
i−1 − 1

2

)
+ 1

2β0(s
′
i + s ′

i−1) (3.53)

for i = 1, 2, . . . . For β, β ′ → 0, we get s ′ = −l − 1
2 (D − 3), g′ → 1, ε̃′

0 → −l − 1
2 (D − 4)

and s ′
i = −l + i − 1

2 (D − 3), g′
i → 1, ε̃′

i → 2, which agree with the conventional results [31].
Proceeding as in section 3.1, we can write the energy eigenvalues ẽm(g′, s ′) = ∑m

i=0 ε̃′
i

of h(l) as

ẽml =
(

2m − l − D − 4

2

)
�(l) +

1

2
β0

(
2m − l − D − 4

2

)

−β0

(
l +

D − 3

2

)(
2m +

1

2

)
+ 2β0m

2. (3.54)

The comparison with equations (3.29) and (3.30) shows that the new quantum number m is
related to the radial and principal quantum numbers, n and N, through the relation

m = n + l + 1
2 (D − 2) = 1

2 (N + l + D − 2). (3.55)

We have therefore rederived the energy spectrum of h(l) in an alternative way.
The second Hamiltonian hierarchy h

(l)′
i , i = 0, 1, 2, . . . , containing (3.10) as its first

member, is given by an expression similar to (3.32) with

a
(l)′
i =

(
l − i +

D − 3

2

) (
l − i +

D − 1

2

)
(3.56)

b
(l)′
i = b(l) + 2β0i�

(l) + β2
0 i2 (3.57)

c
(l)′
i = i

[
β0

(
−l + i + 1 − D

2

)
+ �(l)

]
. (3.58)

For β, β ′ → 0, a
(l)′
i remains unchanged, but b

(l)′
i → 1 and c

(l)′
i → i, so that we recover the

property h
(l)′
−i = h

(l)
i − 2i for the Hamiltonians of the extended hierarchies. For nonvanishing

β, β ′, however, there is no simple relation between them and the only common member is
h(l) = h

(l)
0 = h

(l)′
0 . Ladder operators cannot therefore be built by combining the two different

types of shift operators. Such ladder operators have actually been constructed by using another
method [10] and they appear to be very complicated operators.

4. Conclusion

In the present paper, we have continued with the application, initiated in I, of combined
factorization and shape-invariance techniques to quantum mechanical problems in the context
of a theory based on some deformed canonical commutation relations and predicting nonzero
minimal uncertainties in position and/or momentum.

To start with, we have determined for the first time the spectrum and the eigenvectors
of a one-dimensional harmonic oscillator in a uniform electric field E . We have established
that whenever α �= 0, i.e., whenever there is a nonzero minimal uncertainty in momentum,
the correction to the harmonic oscillator eigenvalues due to the electric field depends on the
energy level and actually decreases when going up in energy. This is true whether there is also
a nonzero minimal uncertainty in position or not, i.e., whether β �= 0 or β = 0. As was shown
in I, in the former case the harmonic oscillator spectrum is exponential, whereas in the latter
it is quadratic. In contrast, whenever α = 0 and β �= 0, the electric field induces a constant
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shift of the (quadratic) harmonic oscillator spectrum, as is the case in conventional quantum
mechanics.

In addition, we have shown that although the electric field remains the same in all the
supersymmetric partners of our original Hamiltonian, its effect on the eigenvectors is rather
complicated. The latter have been fully determined for α = β �= 0, in which case the harmonic
oscillator with nonzero minimal uncertainties in both position and momentum reduces to a
q-deformed harmonic oscillator with q > 1. In the general case 0 �= α �= β �= 0, the ground
state and the first few excited states have been given in terms of n–q-boson states. In both
instances, use has been made of a (q-deformed) Bargmann representation of the latter and of
q-differential calculus.

Furthermore, we have shown how our results compare with those of a previous study of
the spectrum of the most general Hermitian Hamiltonian that is bilinear in q-boson creation
and annihilation operators with q > 1.

In the second part of our paper, we have reconsidered the problem of a D-dimensional
harmonic oscillator when there are isotropic nonzero minimal uncertainties in the position
coordinates, depending on two parameters β, β ′. We have established that our SUSYQM
techniques can be extended to deal with the corresponding radial equation in the momentum
representation. As a result, we have rederived in a very simple way both the spectrum and
the momentum radial wavefunctions, previously found through lengthy differential equation
techniques [9]. Finally, we have commented on various factorizations of the radial Hamiltonian
and stressed both the resemblances and the differences between the deformed case and the
conventional one.

The second part of our paper opens the way to other yet unsolved D-dimensional problems.
Among these, we may quote that of a D-dimensional harmonic oscillator in a magnetic field,
which would be in line with the first part of our paper.
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